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A semiclassical study presented here indicates that a sufficiently
short and intense pulse can be much more effective in inducing a collisional
radiative trangsition than cw radiation or a 1long pulse, although the
intensity must not be too high because the Rabi oscillation can bring down
the probability, For the situstion of a molecule physisorbed on a
crystalline surface and irradiated by a laser, a master equation approeach,
usad to describe the time evolution of the population of the vibrational
adbond levels, shows that for high intensities laser-induced vibrational
excitation is the same for pulsed and cw lasers.
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GAS-PHASE MOLECULAR COLLISIONS

IR e SESZEX e P

Most theoretical and experimental work in the past on the subject of
molecular collisions occurring in the presence of a laser field has been

concerned with the case in which the field consists of continuous wave (cw) rq
radiation. In this case the colliding molecules are influenced by the laser ;§
radiation during both the incoming and outgoing trajectories. If, however, I
the laser field consists of a pulse whose duratipp is shoster than the N
collision time (for a typical collision time of 10 10 s, one must G:
have a (sub)picosecond pulse), only a part of the collision process occurs &p
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in the presence of the laser field. The outcome of the collision therefore
may be significantly diffarent depending whether the laser radiation is cw
or pulsed. The difference shows up strongly in particular for collision
processes involving an electronic tranfiiion that occurs via curve crossing,
as we have shown in our earlier work. '™ Below we give a brief description
of such a transition taking place in the presence of laser radiation, with
special attention to the effect of the temporal duration of the laser
radiation An experimental study of this effect has recently been
reported.

Let us consider an electric-dipole transition induced by collision that
occurs in the presence of laser radiation. Within the semiclassical two-
state formalism, the Schrodinger equation yields the following coupled
equations for the probabzlity amplitudes cl(t) and cz(t) for the two states
1 and 2 being considered:

dcl(t)
W= = e s, (1a)
dcz(t)
ih KT H21c1 + H22c2 , (1b)
where H and H 2 represent adiabatic potential curves in the dressed-
molecule represen%ation for the two states 1 and 2 which, we assume, cross
at a certain internuclear distance R = R (1.e., HZZ(RC)-HII(R ) = 0), the
interaction term H is given by le = - 4B /2, u i5°thé transifion moment,
and is the electric field "amplitude of the laser radiation. The

transigion probability ! -+ 2 is obtained by solving the coupied equations
(1a) and (1b) with the initial conditions |c,(0)| = 1 and ¢,(0) = 0. These
equations, however, cannot be solved anal§t1cally in gengral because the
matrix elements Hij vary with time in a complicated manner for a realistic
collision system. One therefore must rely on either approximate or

numerical solutions. Here we present results of approximate calculations
based on the Landau-Zener method along with results of numerical
calculations.

Perhaps the simplest approximate solution to Bqs. (1) is provided by
the Landau-Zener model. The model assumes that the transition is localized
in a narrow neighborhood of the crossing point R over which H 2. ° H
varies linearly with R and Hl remains constant. The $ransition pro%abilié§
as the system passes through zhe crossing point Rc is then given by

Ps=1 - exp(-p) (2a)
where

p = 2nlH (R )12 /wi1 - BB, (2b)
c

b is the impact parameter, y is the slope of |H, -H,.| vs. R at Rc' and v is
the relative velocity of the coiliding partners at Rc. If the collision
occurs in the presence of a8 short pulse so that the systém is illuminated on
the way in or out only, the transition probability is given by Ps = P, On
the other hand, if the system is illuminated both on the way in and out as
is the case for cw radiation or a long pulse, the transition probability is
given by P = 2P(1-P). To exhibit clearly the intensity dependence of the
transition cgrobability, we note that p is proportional to I and let p = BI.
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Then the short-pulse probability and cw probability are given respectively
by

P8 = ] - exp(-8I) (3a)

P, = 2 exp(-gI)[1-exp(-BI)) (3b)
where, for the case of a short pulse, a square pulse of intensity I is
assumed,

In Table 1 we give the Landau-Zener probabilities P, 4and P for
different values of I and b for the case R_ = 9.5, v = 1.83x10 ', Y =°H.002
and u = 3 (all quantities are expressed inatomic units), assuming that the
laser beam is linearly polarized in the direction of the relative velocity v
of the colliding partners and that the transition moment u is parallel to
the internuclear axis as in a I - I transition. The probability P as a
function of the intensity I exhibits the well-known single-peak structlire of
the Landau-Zener model, whereas P_monotonically increases with I. As a
result, P and P differ significanEIy at high I for which BI >> 1. Thus,
according Yo the® Landau-Zener model, a short pulse can be much more
effective than cw radiation or a long pulse in inducing a transition, if the

pulse intensity is sufficiently high.

Table 1. The c¢cw probability P and short-pulse probability P calculated
cw s
using the Landau-Zener model.

2
bla.u.) ITWem™) 168 6108 107 sx10? 1010 sx10!® 10! skgoll
P, 0.053 0.23 0.37 0.39 0.13 0.00 0.00 0.00
1
P, 0.027 0.13 0.26 0.74 0.93 1.00 1.00 1.0
P, 0.045  0.20 0.33 0.43 0.18 0.60 0.00 0.00
5

P' 0.023 0.11 0.21 0.69 0.90 1.00 1.00 1.00

In order to check the accuracy of the data presented in Table 1, we
also have calculated the transition probability by numerically integrating
Eqs. (1). For this calculation, we have assumed that the potential curves
satisfy
= 3 exp(-0.737R) - 0.0027 |, (4)

H,, - H

22 11
which yields R = 9.5 and v = 0.00Z. We have also assumed a straight-line
constant velocigy (=, v) trajectory for simplicity of calculation and have
chosen v = 1.83 x 10  and u = 3, as before. The result of our calculation
is summarized in Table 2. Comparison of Tables 1 and 2 indicates that the
Landau-Zener model yields relatively accurate probabi}itiesz at low
intensities, but the model fails at high intensities (I > 10°" W/cm®). This

is mainly due to the inability of the Landau-Zener model to correctly

Bl at g At B N B S C O raco tan Sl o o g & LDV W S e iy I RECR VO g e e e T N A Y )

2 A ma STm W A A A A,aERERS A TR BG4 YAl SRA_Ay TSR




describe ihe Rabi oscillation of the molecular system at a high laser
intensity.” Since P’ll decseases due to the Rabi oscillation as I is
increased beyond -10 ° W/cm“, there is a finite range of the intensity over
which a short pulse is much more effectivtothan £Y radi,tion. For the model
system being corsidered, this range is 107 - 10" W/em®.

Table 2. The cw probability P w and short-pulse probability Ps calculated
by numerical integratiSii of Eqs. (1).

2
b(a.u.) \I(Wems?) .8 5x108 10° sx10° 1010 sx3010
P 0.056  0.24 0.39 0.3 0.21  0.15
1 cw
B, 0.029  0.14 0.27  0.73  0.88  0.92
0.034  0.17 0.28  0.41 0.13  0.13
5 cw
3 0.019  0.091 0.17  0.71 0.9  0.93
2
b(a.u.) \ I(Wea®) 411 sx10l! 012 51012 1013 3.0!3
0.24 0.39 0.46  0.48  0.48  0.50
1 Cw
P, 0.86 0.73 0.68  0.60 0.61  0.54
0.23 0.40 0.46  0.49  0.48  0.47
S cw
P, 0.87 0.72 0.66  0.58  0.61  0.63

In view of the recent experimental study3 of the short-pulse effect
considered here, we show in Table 3 the totil number N, of transitions per
target atom per unit pulse energy, an experimentally 3bservable quantity,
for different values of the pulse duration and intensity. Although this
quantity was obtained by integrating the Landau-Zener probability over
impact parameter, the data shown in the table is expected to be accurate
since the Landau-Zener model yields accurate probabilities at the values of
1 considered herea. As can be seen from the table,atheregis very little
difference Dbetween long and shortlopulse at 10" - 107 W/cm®. The
difference, however, shows up at 10 W/cm“, as a noticable jump in N_ is
seen in going from 10 to 1 ps (the collision time of the system béing
considered is ~ 2.5 ps).
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Table 3. Total number of transitions per target atom per unit pulse energy
(in arbitrary units).

pulse

I(H/cmz) duration (ps) 1000 100 10 1 0.1
108 19.8 19.8  19.9  20.2  20.2
10° 15.1 15.1  15.7  18.5 18.5
1010 1.45 1.57  2.81 8.75 8.84

In conclusion, the results of our calculations summarized in Tables 1,
2 and 3 indicate that a short pulse can be much more effective in inducing a
collisional radiative transition than cw radiation or a long pulse. This
short-pulse effect Dbecomes significant 1if the pulse intensity is
sufficiently high that the probability of transition at the crossing point
is high (-~ 1). On the other hand, the intensity must not be too high
because the Rabi oscillation can bring down the probability to a low value
at an extremely high intensity.

ADBOND DYNAMICS

Level Populations

We now turn to consider a molecule physisorbed on a crystalline surface
and irradiated by a laser. Due to the weak van der Waals bond, the
admolecule has a series of vibrational states for the motion perpendicular
to the surface. Under certain conditions it is reasonable to assume that a
laser, with frequency » 1s 1in reasonance with only one pair of these
levels, say |g> and |e>. e transition frequency is w w - w > 0; the
detuning is defined as Ao = - w__. Relaxation of the®8dbond occlirs due to
its interaction with the la:kice ¥8brations of the substrate. In the Markov
approximation, this is described through the occurrence of rate constants
a_, in a set of first-order differential equations for the level populations
an§ coherences gglbhe reduced density operator of the adbond, the so-called
master equation.

For pulsed lasers with a pulse duration At short compared to the
relaxation times (= the inverse rate constants) of the adbond, the latter
can be neglected during the pulse. Then,lbhe time evolution during the
pulse is given by the optical Bloch equations,

de(t)

at = 8Ry(t)
dRz(t)

o = “OR(E) + 8 (D)Ry(t) (5)
dR3(t)

Tl -Qp(t)Rz(t) ,




vhere 0 (t) = LB (t)/h is the time-dependent Rabi frequency; E(t) =
E (t)cosrmkt) is %Re electri¢ field amplitude of the laser, with slowly-
verying envelope (t); and u again is the transition dipole moment. The
real-valued quantities R, are defined by the populstions of and coherences
between the,.two adbond lévels coupled by the laser, in the rotating frame,
10

according to

R1 - P8° + Peg .

Ry = -i (Pse - Peg) (6)

R3 = Pe - P8 .

The total exciting effect up to time t of a laser is characterized by
a b 4e '
o(t) = 7; dt' o (t') . (1)

Here, we are only interested in the effect of a complete laser pulse, so
that the integral can be taken over a single pulse to give a time-
independent parameter 8. Let R?, RE and RS be the values just before the
gu}ae. Then, for zero-detuning, lhe values tight after the pulse are given
y

Rl(At) - RI

Rz(At) n Ricos(e) + Rgsin(e) (8)
R3(At) = Rgcos(e) - Risin(e) .

vhere the start of the pulse is taken as zero point of time, and At is the
pulse duration. We shall only consider the situation of maximal excitation,
vwhich is obtained for 6 = 7, the so-called m-pulses.

Instead of a single pulse, we shall consider a series of equally spaced
n-pulses, with interval time t_ and pulse duration 4t << t_. Assume that
the system is initially in thermgl equilibrium, i.e., R, = 0? R, = 0 and R3
= R,(eq). Then, after a n-pulse, R, and R, are zero again, but R, i3
changed into 1its opposite: R_(At) = "- R (eq}. Between two consecutive
pulses the adbond evolves in timé through its relaxation against §b§ lattice
vibrations. This process can be described by a master equation. In the
present situation only the populations have to be considered. However,
unlike the coupling with the laser, transitions to and from all vibrational
states are possible. With the result of the laser pulse as initial
condition, the formal solution of the master equation is (At < t < tp).

P(t) = P(eq) + @ ""{B(st) - P(eq)} , (9)

where W 1is the matrix formed by the transition rate constants a and has
elements

(10)
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P(t) 1is the vector formed by the populations P (t), and P(eq) refers to the
thermal equilibrium distribution, given by W P(gq) =0,

After a number of pulser have passed, the adbond will reach a quasi- ’

steady state, wherein the time evolution of the paopulations is the same in s
each interval tp (see Fig. 1). Then, combining Eqs. (8) and (9), two sets !

REQJF = = = = = =~ = == — - = = y
&
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Fig. 1. Schematic drawing of the time evolution of the level occupations for
a pulse sequence in the quasi-steady state. Curve a represents R.;
curve b gives P8 + Pe; and curve c gives Pn for any other level n™=

> %

| e or g. NL
G
of equations are obtained, which together determine the ignstants Pn(At) in Q.
terms of the rate constants a . and the interval time tp: N
Wt .
B(t)) = Pleq) + & P (R(st) - P(ea)) (11) -
o b ]
P (t) = P (at) = P2 (n #e,g) ?!
P ° 2 -
g(tP) = P (at) = P8 (12) )
"
P (t ) =P (at) = P°
e p -4 e ;\
FPor a continuous wave laser, the Rabi-frequency is a constant, Q w' -ff
Now, the relaxation processes cannot be neglected during the interactidn ,
with the laser. The rate constants LY give rise to additional terms in the "




optical B}Yckzoquntion:. in a way analogous to their occurence in the master
equation.™ "’ After some time a true steady state will be reached, in
which the populations are determined by

2 'nkpn(.) - 2 'knpk(.) (n = e,g)

k k

r
o) = w) - L & @) « P (e

ERXCEN YO g (B - 2,0 (13)

k k 2 eg
r
e

e N N v AR X

k k 2 eg

where reg = z{a X + .gk)' and the steady-state values are denoted by Pn(w).

k

Pulsed Laser Versus Continuous Wave Laser

To compare the effect of a pulse train with the effect of a continuous
wave (cw) laser on the dynamics of some system, a criterion is needed to
compare both lasers. Below two possible criteria will be defined. First,
it is required that both lasers have equal average power. Because the Rabi-
frequency, Q(t), is proportionai to the electric field of the laser, the

intensity 4is proportional t?l n°(t). Performing the time-average for a
series of w- ulses then gives:
2 2
o, = "/(a tp) . (14)

A second possible criterion is tolfequire the average dissipation from both
lasers to be equal. This leads to

° . pe ™~ 2 ) - ™
(ps - B, = (@2 T MR (=) - B(=) (15)

where P;, Pos Pg(ﬂ) and Pe(ﬂ) follow from Bqs. (11)-(13).

The efficiency of a pulsed laser over a cw laser to induce some process
(e.g., desorption or chemical reaction) will be different for each process.
Here we restrict ourselvaes to the effect on the population of *“he upper one
of the two 1levels coupled by the 1”}{ for a two-level system. A more
extensive discussion 1is given elsewhare. Let us define the efficiency e
as the ratio of the average excited level population P_(av) under pulsed
laser irradiation to the steady state population P (=) under cw las I
irradiation. PFor a iwo-level system, Eqs. (11)-(13) afe easily solved.
We are interested in the situation where the laser-induced population is
substantially larger than the equilibrium thefTal occupation of the levels.
Then, neglecting the latter, the efficiency is

12, 2
€= 2 (1-e%) 7 * Tou (16)
e p) P Qv

For a given integrated intensity of_?ne pulse, the average intensity of the
pulse train 1is proportional to tp . Then a definition for a strong/weak
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pulsed laser 1! Ecp§ l. Analogously a strong/weak continuous wave laser
is defined by (ch/r ) being much larger/smaller than one.

Using these definitions, it follows from Eq. (16) that ¢ = 1 in the
strong laser limit. This can easily be understood when it is realized that
both for the pulsed laser and the cw laser the system is then continuously
driven into saturation (R3 = 0). Using criterion 1 (Bq. (14)) leads to

2 2
1 -e rEp r-+ zncv Tat
€= prory 3 = - (17)
1+ P r "

In the weak laser limit this gives ¢ = I‘At/n2 << 1, and thus ¢ can be made
arbitrarily small by decreasing the pulse duration At. Thq explanation is
that the intensity of the pulsed laser is proportional to Q_at, where,s the
exciting effect is only proportional to §_At. Decreasing AE. vhile Q 4t is
held constant, will decrease fI_At too. pPoi a cw laser both the intgnsity
and the exciting effect are propo?tional to G . The latter can be regarded
as the limiting form of a pulsed laser with §¥ - =, and therefore will give
the most efficient form of excitation.

For criterion 2, € =1 is obtained, independent of the laser powar.
This result reflects the fact that the energy flow into the substrate (is
absorbed energy) is proportionsal to i?elgverage occupation of the excited
level and not on how Pe varies in time. "’
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